What is Deep Learning ??

This article basically just a translation version of the article of deep learning previously in bahasa Indonesia.

This time I want to share about what is deep learning, at least as far as I have learned untul this day (when this article was made). Before I have tried to created a startup company that tried to implement machine learning and deep learning algorithm engine that we made (with my friend).

Many references that we can use on deep learning, especially from big companies such as google, facebook, Baidu, microsoft, amazon, nvidia and others. What was Deep Learning? how important or how valuable deep learning? especially for business, who figures that a lot of research or build deep learning? And why me and my friends want to build their own engine for machine learning before? not a lot of framework, libraries and services (especially such as azure and aws) for machine learning? (when this article was made)

I will not answer all of the questions above, because it will take time to write hahaha, I write as my fingers Moves hahaha Continue reading

Advertisements

Backpropagation and Deep Neural Network engine

After discuss with my friend Eko kurniawan, finally we share our deep learning engine project to github. So you can try the engine or contribute to develop the engine (we hope there are a lot of people interested with this project).

Our project started in 2015 when we tried to create a startup company that concern with data analytics or data science. We trying to create the general engine for deep neural network that able to customize the stack of methods, so can be fit with some cases in the real world. And I used this engine for my theses in ITB (Institut Teknologi Bandung) to finished my study in master of informatics (computer science) program.

I hope this engine can be use to resolve a lot of problem that need machine learning implementation, especially for automation system. We call this project “DEEPWISSEN”, hope it will be usefull.

*before, I have explained about Deep Learning in an article in this blog using Bahasa Indonesia :  https://situkangsayur.wordpress.com/2015/07/27/deep-learning/

or in english : https://situkangsayur.wordpress.com/2016/12/25/what-is-deep-learning/

Thanks.

You can check the project repo in this link : https://github.com/situkangsayur/machine-learning

and for the jar : https://github.com/situkangsayur/deepwissen-jar

Kenapa dalam MSE, error di pangkatkan 2? dan kenapa ada yang mengambil 2m (jumlah data) untuk mengambil mean

Assalammu’alaikum,

baiklah setelah kemarin 2 kali seminar (seminar inaicta dan tesis) lau di hari Jum’at, 18 September 2015, 2 kali sidang (sidang tesis dan sidang Jum’at yang berbahagia) hehee… Ada pertanyaan yang dasar banget yang saya tidak bisa jawab, sebenarnya sebelumnya pernah baca penjelasan mengenai MSE dari mana asalnya, tapi saya ngeblank bener-bener lupa, dan memang belum tahu kenapa MSE seperti itu (tujuan squared, atau RMSE dengan tambahan akar pangkat 2 dari error). Jadi pertanyaannya kurang lebih :

  1. apa arti pangkat 2 dari pada RMSE atau MSE?
  2. kenapa dalam MSE yang saya gunakan dalam penelitian tesis itu 1/2m, dimana ‘m’ adalah jumlah data, dan kenapa dalam RMSE digunakan squared root atau akar pangkat 2?
  3. dan apa perbedaanya MSE dan RMSE? kenapa tida jumlahkan errornya lalu bagi jumlah data saja?

Saya agak ngeblank , mencoba mengingat apapun yg pernah saya baca atau lihat videonya, dalam referensi machine learning banyak yg menyebutkan karena “lebih sering digunakan”, tapi kenapa bentuk fungsinya hrs seperti itu? karena make sense kenapa tidak langsung saja delta atau error dibagi jumlah data (absolute error). Setelah sampai masjid baru inget, ada di part video Andrew Ng (entah bagian discussionnya) hahaha…

time to googling dan stackexchange 😀

Nah setelah mendapatkan beberapa informasi berikut hasil pencarian dan diskusi di FB dengan para ahli yg lebih ahli dan lebih senior hehe :

“Revisiting a 90-year-old debate: the advantages of the mean deviation, lebih cenderung ke mean deviation…  tapi http://stats.stackexchange.com/…/mean-absolute-deviation-vs… ,

“the mean deviation is rarely used”…. ada yang bilang agar lebih efisien, atau lebih mudah…

http://stats.stackexchange.com/…/why-square-the-difference-…

https://ww1.cpa-apc.org/Publicat…/…/PDF/1996/Oct/strein2.pdf

http://www.leeds.ac.uk/educol/documents/00003759.htm

Mean Deviation vs Standard Deviation..

untuk penggunaan 1/2m hanya untuk mempermudah membaca cost function dengan mengkalikan dengan setengah. hasilnya akan sama, terhadap proses minimisasi gradien.

 

Dan berikut beberapa komentar diskusi di FB : Continue reading

Data Science ada dimana-mana

Assalammu’alaikum wr.wb,

Kemarin saya sehabis pulang dari salah satu ecommerce di Indonesia untuk mendiskusikan berbagai possibility yang bisa mereka lakukan pada beberapa sistem mereka agar lebih pintar dan memanfaatkan seluruh data yang mereka miliki, bertemu dengan seseorang kita sebut saja mas boy yang berprofesi sebagai salesman produk makanan di perusahaan makanan lokal yang ternama.

Saya kebetulan mendapatkan tempat duduk yang bersebelahan dengan mas boy setelah itu berkenalan dan ngobrol lalu membicarakan mengenai kultur perusahaan, tempat kerja dan lain-lain. Saya ketahui ternyata mas boy ini salesman senior di suatu perusahaan dan sudah mencoba berbagai perusahaan. Lalu saya tanya-tanya mengenai pekerjaannya, apa yang dikerjakannya. Continue reading

Bayesian Belief Network

Assalammu’alaikum,

Kali ini saya ingin mencoba share mengenai bayesian belief network, suatu metode dalam machine learning yang masuk ke dalam kategori supervised learning. Pada dasarnya belief network mengambil teori dasar bayessian, yang memanfaatkan distribusi probabilitas pada setiap features yang diketahui. Namun yang membedakan adalah dalam belief network menggunakan suatu network yang merepresentasikan kondisi pengetahuan dependensi dan in-dependensi setiap features yang ada dalam suatu kasus atau dataset. Berbeda dengan naive bayes yang tidak melihat kemungkinan dependensi dan in-dependensi setiap features (attributes), dan itu dapat dilihat dari representasi metode yang digunakan naive bayes. Tentunya dengan melihat model yang dihasilkan adalah berupa inferences yaitu distribusi probabilitas setiap features dalam network maka belief network dapat menjadi alternatif metode yang lebih baik dibanding naive bayes yang tidak melihat kemungkinan tersebut. Continue reading

Infrastruktur Big Data

Ketika membicarakan Big Data tentunya kita akan tersadar terhadap kebutuhan infrastruktur untuk menopang teknologi Big Data tersebut. Dalam infrastruktur teknologi Big Data sendiri memiliki karakteristik yang berbeda dengan traditional data, yaitu :

Screenshot from 2014-01-04 17:33:50

Pada awalnya tahun 1970-2000 data yang dibangun meruapakan data dengan model terstruktur dan merupakan relational database seperti MySQL, oracle, dan lain-lain. Lalu pada tahun 1995 berikutnya mulai dibangun suatu business intelligence yang menggunakan structured dan relational database dengan system seperti cognos, pentaho dan lain-lain. Pada 2010 hingga sekarang dibangun suatu system yang memiliki tujuan 3V (volume, velocity, varity) atau 4V (ditambah value), dan dengan bermacam teknologinya seperti map reduce, high performance computers cluster dan lain-lain. Continue reading

Big Data dalam Social Media Analysis

Social Media merupakan issue yang sangat hangat diperbincangkan dalam berbagai bidang, salah satunya pemerintahan dan juga eknonomi, karena perkembangan yang terjadi dalam social media dapat menjadi acuan atau bahkan dapa mempengaruhi kejadian yang mungkin terjadi dimasa yang akan dating.

Sesuai yang dikatakan gartner mengenai Big Data “high-volume, high-velocity and high variety information assets that demand cost-effective, innovative forms of information processing form enchanced insight and decision making” . Big data merupakan data yang memiliki volume yang sangat besar, memiliki velocity yang tinggi, dan verietas informasu yang tinggu pula, sehingga dibutuhkan suatu bentuk pemrosesan untuk meingkatkan pengetahuan dan pengembilan keputusan. Dan itulah yang dibutuhkan dalam intelijen bisnis. Continue reading